Aquatic Toxicity Comparison of Silver Nanoparticles and Silver Nanowires

نویسندگان

  • Eun Kyung Sohn
  • Seyed Ali Johari
  • Tae Gyu Kim
  • Jin Kwon Kim
  • Ellen Kim
  • Ji Hyun Lee
  • Young Shin Chung
  • Il Je Yu
چکیده

To better understand the potential ecotoxicological impact of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) released into freshwater environments, the toxicities of these nanomaterials were assessed and compared using Organization for Economic Cooperation and Development (OECD) test guidelines, including a "Daphnia sp., acute immobilization test," "Fish, acute toxicity test," and "freshwater alga and cyanobacteria, growth inhibition test." Based on the estimated median lethal/effective concentrations of AgNPs and AgNWs, the susceptibility to the nanomaterials was different among test organisms (daphnia > algae > fish), suggesting that the AgNPs are classified as "category acute 1" for Daphnia magna, "category acute 2" for Oryzias latipes, and "category acute 1" for Raphidocelis subcapitata, while the AgNWs are classified as "category acute 1" for Daphnia magna, "category acute 2" for Oryzias latipes, and "category acute 2" for Raphidocelis subcapitata, according to the GHS (Globally Harmonized System of Classification and Labelling of Chemicals). In conclusion, the present results suggest that more attention should be paid to prevent the accidental or intentional release of silver nanomaterials into freshwater aquatic environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxicity of various silver nanoparticles compared to silver ions in the Ponto-Caspian amphipod Pontogammarus maeoticus (Sowinsky, 1894)

According to the increased probability of the presence of nanomaterials in the aquatic ecosystems, the present study examined the toxicity of three engineered silver nanoparticles (AgNPs) as well as silver ions in the Pontogammarus maeoticus, a brackish water benthic organism living in the littoral zone of the Caspian Sea. The animals were acutely exposed to different concentrations of two comm...

متن کامل

Toxicity of Silver Nanoparticles in Aquatic Ecosystems: Salinity as the Main Cause in Reducing Toxicity

Background: In recent years, silver nanoparticles due to their antimicrobial properties, have formed about 56% of nanoparticles global production. Since the released nanoparticles ultimately enter water ecosystems, their maximum toxic effects are magnified in aquatic ecosystems. The aim of this study is to show how salinity can decrease the toxic effects of silver nanoparticles on exposed rai...

متن کامل

Toxicity comparison of silver nanoparticles synthesized by physical and chemical methods to tadpole (Rana ridibunda)

One of the possible threats in increasing use of nanomaterials is the emergence of toxicity in humans and other animals which is discussed in nanotoxicology. In addition to toxic effects of nanomaterials themselves, different chemical precursors which are usually used in bottom-up approaches for production of nanomaterials may have secondary toxic effects in living organisms. In contrast, less ...

متن کامل

Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss)

Recognizing the significance of the life stage of fish for nano-eco-toxicological studies, the acute toxicity of colloidal silver nanoparticles (AgNPs) was tested in three different life stages of rainbow trout. Fishes were exposed to colloidal AgNPs at nominal concentrations of 100, 32, 10, 3.2, 1, 0.32, 0.1, and 0.032 mg/L. The estimated 96 hr LC50 values were 0.25, 0.71, and 2.16 mg/L for th...

متن کامل

Acute toxicity of synthetic colloidal silver nanoparticles produced by laser ablation method to Eastern mosquitofish, Gambusia holbrooki

Considering the growing production, consumption of nanomaterials and their probable release into the aquatic ecosystems and study on the toxic effects of these materials are of critical importance to aquatic organisms. In this study, the acute toxicity of silver nanoparticles (AgNPs) produced by a physical method (laser ablation) was examined on Gambusia fish. Acute toxicity tests were planned ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015